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Abstract 

Targeted memory reactivation (TMR) is a methodology employed to manipulate memory 

processing during sleep. TMR studies have great potential to advance understanding of 

sleep-based memory consolidation and corresponding neural mechanisms. Research 

making use of TMR has developed rapidly, with over 70 articles published in the last 

decade, yet no quantitative analysis exists to evaluate the overall effects. Here we present 

the first meta-analysis of sleep TMR, compiled from 91 experiments with 212 effect sizes 

(N=2,004). Based on multilevel modelling, overall sleep TMR was highly effective 

[Hedges’ g=0.29, 95% CI: (0.21, 0.38)], with a significant effect for two stages of non-

rapid eye movement sleep [Stage NREM 2: Hedges’ g=0.32, 95% CI: (0.04, 0.60); and 

Slow-Wave Sleep: Hedges’ g=0.27, 95% CI: (0.20, 0.35)]. In contrast, TMR was not 

effective during REM sleep nor during wakefulness in the present analyses. Several 

analysis strategies were used to address the potential relevance of publication bias. 

Additional analyses showed that TMR improved memory across multiple domains, 

including declarative memory and skill acquisition. Given that TMR can reinforce many 

types of memory, it could be useful for various educational and clinical applications. 

Overall, the present meta-analysis provides substantial support for the notion that TMR 

can influence memory storage during NREM sleep, and that this method can be useful for 

understanding neurocognitive mechanisms of memory consolidation.  
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Public Significance Statements 

Sensory cues can be used to reactivate associated memories during sleep and thus 

promote memory consolidation. This meta-analysis shows that targeted memory 

reactivation during sleep can improve memory performance with a small to moderate 

effect, and that this effect is most clearly evident when memories are reactivated during 

stages 2 and 3 of non-rapid-eye-movement (NREM) sleep.  
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Promoting memory consolidation during sleep:  

A meta-analysis of targeted memory reactivation 

The idea of manipulating memories and thoughts during sleep is fascinating for 

neuroscientists, psychologists, and the general public. Although the idea may sound like 

science-fiction, the past decade has witnessed an increasing number of studies wherein 

memory processing is directly manipulated during sleep. By covertly administering 

sensory cues while participants are asleep, associated memories from recent learning can 

be reactivated and modified. This procedure, known as targeted memory reactivation 

(TMR), gives researchers the ability to noninvasively reactivate specific memories during 

sleep. More generally, memory reactivation is thought to be a natural feature of sleep that 

underlies sleep-dependent memory consolidation and the effective preservation of 

memories (Paller, Mayes, Antony, & Norman, in press). 

The use of TMR in various experimental contexts has greatly advanced our 

understanding of causal relationships between sleep physiology and memory 

consolidation. TMR research is also attractive because its usefulness could extend beyond 

the laboratory, with high potential value for enhancing learning via offline memory 

processing. For example, benefits may be realized for boosting skill and language 

acquisition, and even enhancing psychotherapeutic effectiveness (for related discussions, 

see Diekelmann, 2014; Paller, 2017). Despite the influx of publications dedicated to this 

line of research, two imperative questions remain un-answered: what is the overall effect 

size aggregating across TMR studies and what are the variables that modulate the 

effectiveness of TMR? This meta-analysis aims to address these questions, providing 
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quantitative estimates of the overall TMR effect as well as effects under various 

experimental conditions.  

Spontaneous and Targeted Memory Reactivation During Sleep 

Memories continue to change, even after initial encoding and between episodes of 

deliberate rehearsal. Jenkins and Dallenbach (1924) provided initial evidence that offline 

sleep influenced memory processing: participants showed superior memory retention 

following sleep versus following an equal period of wakefulness. More recently it has 

become widely accepted that sleep plays an important role in consolidating and 

transforming memories (Diekelmann & Born, 2010; Inostroza & Born; 2013; Rasch & 

Born, 2013; Stickgold & Walker, 2013). For example, it has been reported that sleep can 

stabilize memories and render them more resistant to retroactive interference 

(Ellenbogen, Hulbert, Stickgold, Dinges & Thompson-Schill, 2006), and that sleep can 

promote integration of newly learnt information into existing memory schema 

(Tamminen, Payne, Stickgold, Wamsley & Gaskell, 2010). Moreover, motivation also 

shapes sleep-based memory consolidation, given the demonstrated influence of emotion, 

reward, and future relevance on retention (Fischer & Born, 2011; Payne et al., 2015; 

Wilhelm, Diekelmann, Molzow, Ayoub, Molle & Born, 2011). 

One plausible mechanism supporting sleep-based memory consolidation is that prior 

learning experiences are spontaneously reactivated during sleep. Techniques such as 

single-unit recording, scalp electroencephalography (EEG), positron emission 

tomography (PET), and functional magnetic resonance imaging (fMRI) allow researchers 

to observe brain activity during post-learning sleep. Specifically, brain activity related to 

wakeful encoding can spontaneously re-emerge during subsequent sleep, possibly 
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indexing memory reactivation given that the magnitude of such responses can predict 

post-sleep memory performance (Deuker et al., 2013; Peigneux et al., 2004). These 

studies relied on spontaneous memory reactivation and did not directly manipulate 

memory reactivation during sleep. Compelling evidence for causal relationships between 

sleep-based memory reactivation and improved memory performance could be attained 

using methods to allow memory reactivation to be externally initiated and guided.  

As shown in Figure 1a, TMR paradigms are characterized by three core components: 

First, specific learning episodes are designed so that strong associations are formed 

between certain sensory stimuli and learned information. In some cases, the stimuli are 

the main focus of learning. Secondly, previously learned sensory cues are presented to 

participants during sleep, usually during specific sleep stages identified by standard 

polysomnographic methods. Steps are taken to avoid arousal from sleep (e.g., sounds 

delivered at a low intensity over a white-noise background). Critically, re-exposure to 

sensory cues is intended to reactivate previously learned information. The last component 

consists of a post-sleep test upon waking. By comparing performance change scores 

between reactivated and non-reactivated memories, researchers can isolate the TMR 

effects due to the reactivation manipulation. 

Although the term TMR was coined only recently (Oudiette & Paller, 2013), research 

using memory reminders during sleep was evident since at least the 1950s and has been 

periodically documented since (e.g., Aarons, 1976; Dillon & Bowles, 1976; Fox & 

Robbins, 1952; Guerrien et al., 1989; Hars et al., 1985; Hars & Hennevin, 1987; Oswald, 

Taylor & Treisman, 1960; Tilley et al., 1979; Smith & Weeden, 1990, Wood, Bootzin, 

Kihlstrom & Schacter, 1992; for a review and discussions of these early studies, see 



 7 

Oudiette & Paller, 2013). These earlier studies not only aimed to reactivate prior learning 

established during wakefulness, but in some cases also tried to produce novel learning 

using sensory cues during sleep. Many of these studies were controversial and regularly 

dismissed on methodological grounds (e.g., Bruce, Evans, Fenwick & Spencer, 1970). 

However, after Rasch, Buchel, Gais, and Born (2007) and Rudoy, Voss, Westerberg and 

Paller (2009) published their seminal experiments, this line of research has grown 

considerably; Figure 1b documents this growth in publications on TMR.  

An Overview of TMR Research 

In Rasch et al. (2007), the researchers paired an olfactory cue with two learning tasks: 

a declarative, spatial location task and a procedural, finger-tapping task. Compared with 

various control conditions, re-exposure of the same olfactory cue during subsequent SWS 

improved spatial recall, but not finger-tapping performance. Improvement of spatial 

recall was limited to cueing during SWS, in that cueing during REM or wakefulness did 

not produce noticeable change. Odor-induced memory reactivation during SWS was 

additionally supported by fMRI findings showing that exposure to task-relevant odors 

during SWS elicited hippocampal activity.  

Rudoy and colleagues (2009) similarly reactivated spatial memories during SWS but 

with a set of low-intensity sounds instead of a single odor. These sounds had been 

presented during learning, each with an image of a semantically related object. Post-sleep 

results showed that TMR altered memories during SWS, as locations of cued objects 

were recalled more accurately than were locations of uncued objects. This experiment 

thus made two unique contributions. First, it demonstrated that reactivation during SWS 

can be provoked through the auditory modality. Prior thinking was that such auditory 
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input would largely be prevented from reaching the cortex due to gating at the thalamus, 

whereas olfactory processing does not pass through the thalamus (Zelano & Sobel, 2005). 

Second, it showed that reactivation with TMR can influence a select subset of specific 

memories formed during a learning episode.  

These and other TMR studies enabled researchers to make strong causal inferences 

linking offline, sleep-based reactivation to subsequent memory performance. 

Furthermore, additional insights were provided about the roles of distinct sleep stages and 

sleep-physiology signals in relation to memory consolidation. Investigating cue-elicited 

brain activity during sleep can enable researchers to pinpoint neural mechanisms 

contributing to memory change (Ai et al., 2018; Antony et al., 2018b; Belal et al., 2018; 

Cairney et al., 2018; Farthouat, Gilson & Peigneux, 2017; Schreiner, Doeller, Jensen, 

Rasch & Staudigl, 2018; Schreiner, Lehmann & Rasch, 2015; Shanahan et al., 2018). 

Identifying relevant neural signals (e.g., slow oscillations, spindles, other brain rhythms, 

and fMRI activations) has now become the target of many creative experimental 

manipulations. Moreover, oscillatory stimulation can also be used to entrain brain 

rhythms to shed further light on their roles in memory (e.g., Antony & Paller, 2017; Ngo 

et al., 2013; for a recent review on different stimulation methods, see Cellini & Mednick, 

2018).  

Given that translating basic science research to applications outside the lab setting can 

be advantageous, TMR provides new opportunities to boost learning beyond ordinary 

sleep (Diekelmann, 2014; Paller, 2017). For example, Diekelmann, Biggel, Rasch and 

Born (2012) reported that a 40-min sleep with TMR enhanced memory when compared 

with the same length of sleep without TMR (see also Schönauer, Geisler, & Gais, 2014). 
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Another intriguing possibility is that the benefits of TMR are cumulative and, when 

applied over longer periods of time, could help those who suffer from more severe 

memory difficulties such as neurodegenerative diseases (e.g., Westerberg et al., 2012). 

TMR might also aid approaches in clinical psychotherapy (Oudiette, Antony & Paller, 

2014), as using TMR during sleep could reactivate skills from a prior therapy session, 

helping those who suffer from PTSD, anxiety, depression, among other disorders (Paller, 

2017).  

To date, TMR research has been studied with many different sorts of learning. As 

shown in Table 1, this list includes learning paradigms such as word associative learning, 

visual-spatial memory, emotional memory, skill learning, vocabulary learning, grammar 

learning, fear conditioning/extinction, and so on. Notably, TMR has also been combined 

with innovative learning tasks that are not typically studied in memory research, such as 

phobia-exposure therapy, counter-stereotype learning, multisensory integration, value-

based decision making, and so on (e.g., Ai et al., 2018; Honma et al., 2016; Hu et al., 

2015; Rihm et al., 2016). Outside of human evidence, TMR has also been conducted with 

non-human animals including rats, mice, and even with invertebrates such as honeybees 

(Bender & Wilson, 2012; Purple, Sakurai & Sakaguchi, 2017; Rolls et al., 2013; 

Rothschild, Eban & Frank, 2017; Zwaka et al., 2015). These cross-species studies 

provide converging evidence that memory processing can be manipulated during sleep.  

A Quantitative Assessment of TMR 

To date, over 90 TMR experiments have been performed on humans. These studies 

can inform our current understanding of what domains of learning are especially 

amenable to benefit from sleep reactivation. In addition, certain experimental factors may 
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influence the effectiveness of TMR, including sleep stage when sensory cues are 

presented (SWS vs. REM, Lehmann et al., 2016; Rasch et al., 2007; N2 vs. REM, 

Laventure et al., 2016; Sterpenich et al., 2014; N2 vs. SWS, Belal et al. 2018), memory 

strength prior to sleep (Cairney, Lindsay, Sobczak, Paller & Gaskell, 2016; Creery et al., 

2015), amount of prior knowledge (Groch, Schreiner, Rasch, Huber & Wilhelm, 2017), 

and degree of competition between memories (Antony et al., 2018a; Oyarzún et al., 

2017). Review articles by Oudiette and Paller (2013), Schouten and colleagues (2017), 

Cellini and Capuozzo (2018), and Paller and colleagues (in press) have aptly summarized 

the breadth of topics investigated using the procedure, yet no quantitative summary of 

experimental effects exists. Narrative reviews typically adopt a vote-counting approach in 

summarizing existing evidence, taking TMR results as either significant or not (Cellini & 

Capuozzo, 2018, Table 1; Schouten et al., 2017; Tables 2-4). Despite its appealing 

simplicity, this vote-counting approach can be misleading because null results and 

inconsistent findings are attributed to sampling errors or procedural variations in a 

descriptive rather than in a quantitative manner (Siddaway, Wood & Hedges, 2018). In 

contrast, meta-analytic approaches synthesize all available effect sizes, while taking 

statistical power and precision of estimates into consideration to quantitatively estimate 

the effectiveness of specific procedures. Moreover, by partitioning effect sizes into 

different categories, moderator analyses in a meta-analysis can advance theoretical 

understanding of how experimental factors may influence memory consolidation, such as 

sleep stages (NREM vs. REM), learning types (declarative vs. skill learning), and how 

learning outcomes are measured (recall vs. recognition etc.).   
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Here, we aggregated all available datasets to provide evidence relevant for assessing 

the effect size of memory benefits produced by TMR. First, we aimed to provide an 

overall estimate of the TMR effect. We then planned a series of moderator analyses to 

address the aforementioned questions. Our foremost research question concerns whether 

TMR is specific to certain cueing stages, such as N2, SWS, REM, and wakeful states. 

Another potentially important question never directly examined in any single study is 

whether TMR effectiveness varies as a function of sleep duration (ranging from 0.67 

hours to 8 hours). This variable can be examined in a meta-analysis because it aggregates 

studies with different sleep durations.  

We compared effects on different types of learning, based on current theorizing in 

memory research. Learning tasks were categorized into either declarative memory, skill 

acquisition, conditioning, or other types of learning. The last category includes studies 

that cannot easily be grouped into conventional categories, such as phobia-exposure 

therapy, social learning, multisensory integration, value-based decision making, etc. In 

addition to learning tasks, we coded how TMR may differentially influence various 

outcome measurements such as 1) recall that relies on cued or free recall testing, 2) 

recognition in discriminating old and new items, 3) behavioral performance when 

memory is not explicitly probed, such as speed and accuracy during RT-based tasks, or 

problem solving, 4) subjective ratings when participants are asked to self-report how they 

feel and think regarding mnemonic materials, and 5) skin conductance response, SCR.  

In another analysis, we investigated whether TMR effects varied as a function of 

within- versus between-subject designs, and whether TMR effectiveness differed as a 

function of sensory stimulation modality (auditory_verbal, auditory_nonverbal, or 
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olfactory cues). Our hope is that the results from these analyses will serve as a resource 

for future parameter selection and lessen ambiguity concerning boundary conditions of 

effective TMR application.   

Lastly, acknowledging that learning tasks vary, we conducted focal analyses to 

examine subsets of studies with homogeneous learning tasks combined with NREM 

TMR. We identified the following topics: spatial learning, associative learning, 

language acquisition, false memories, and skill learning. We additionally investigated 

cognitive bias modifications, emotional memories, and fearful memories, given the 

potential clinical benefit of improving symptoms associated with mood- and trauma-

related disorders. For example, because TMR can reactivate and bias memories regarding 

potential interpretation of ambiguous scenes (Groch et al., 2016; Groch et al., 2017), it 

may be useful for reducing habitual negative biases observed in depressive and anxiety 

disorders (Hallion & Ruscio, 2011). Compared with overall analyses that span a range of 

different tasks and conditions, focal analyses with relatively homogenous procedures can 

be advantageous because estimated effect sizes can help guide future research on similar 

topics.  

Method 

We relied on two meta-analysis handbooks, Lipsey and Wilson (2001) and 

Borenstein, Hedges, Higgins and Rothstein (2009), as our primary references in each 

stage of implementing the meta-analysis. We also followed the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) statement of Moher et al. (2009) 

and their 27-item meta-analysis checklist to guide our meta-analysis and preparation of 

the manuscript (see supplementary online materials SOM for the PRISMA statement).  
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Literature Search 

Figure 2 depicts a PRISMA flowchart of the literature search. To strive for an 

exhaustive list of datasets, we followed three steps. First, we conducted searches with 

online databases including Web of Science, PsycINFO (via ProQuest, including 

journals/books/dissertations/theses), PubMed, and bioRxiv/PsyArxiv through June, 2019 

with key words referring to memory reactivation and sleep. Exact key words using 

Boolean operators are (targeted memory reactivation OR memory reactivation OR 

memory cueing OR memory replay) AND (sleep OR N2 OR slow-wave sleep OR SWS OR 

NREM OR REM). In this way, we collected (1) peer-reviewed published and in-press 

research articles, (2) unpublished dissertations/theses, and (3) preprints uploaded to 

repositories (i.e., bioRxiv, PsyArxiv). Unpublished dissertations and preprints were 

included to attempt to weigh against publication bias. In the second step, we contacted 

researchers who had previously published on TMR or on sleep and memory consolidation 

to solicit unpublished datasets and under-review manuscripts. We included these 

identified unpublished datasets and manuscripts in the meta-analysis (some of the 

manuscripts were either subsequently published or overlapping with unpublished 

dissertations identified earlier). In Step 3, we checked the reference sections from related 

review articles to identify missing references (Aarons, 1976; Cellini & Capuozzo, 2018; 

Diekelmann & Born, 2010; Oudiette & Paller, 2013; Rasch & Born, 2013; Schouten, 

Pereira, Tops & Louzada, 2017; Stickgold & Walker, 2013). All authors checked and 

agreed on the final reference list.  

Inclusion/Exclusion Criteria  
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We applied the following inclusion/exclusion criteria to select studies for this meta-

analysis. First, sensory stimulation must have been applied to reactivate prior learning 

instead of inducing novel learning or EEG activity change (e.g., Arzi et al., 2012; Arzi et 

al., 2014; Antony & Paller, 2017; Dillon &Bowles, 1976; Ngo et al., 2013; Züst, Ruch, 

Wiest & Henke, 2019). Second, given that our primary research question concerns sleep 

TMR, we excluded articles that only examined wake TMR (Alm, Ngo & Olson, 2019; 

Schreiner & Rasch, 2015; Tambini, Berners-Lee & Davachi, 2017). Third, we only 

included studies that used human participants, excluding the few nonhuman animal TMR 

studies that have been published (e.g., Barnes & Wilson, 2014; Bender & Wilson, 2012; 

Purple, Sakurai & Sakaguchi, 2017; Rolls et al., 2013). Fourth, studies must have 

reported behavioral effects, excluding articles that only examined neural mechanisms of 

TMR (e.g., Batterink, Creery & Paller, 2016). Lastly, sufficient statistical details must 

have been available to extract relevant effect sizes (means, SD, F, and t). When statistical 

details were not reported in the text, we either contacted corresponding authors to request 

relevant data or extracted needed data from published figures in the article using 

“metaDigitise” (Pick, Nakagawa & Noble, 2018). 

Coding of Study Characteristics  

Coding was conducted by the first author and double-checked by the second author. 

Disagreements were resolved through discussions. Interrater reliability was calculated 

with Cohen’s Kappa coefficient (Cohen, 1960), using “ICC” package in R (Wolak, 

2015). In general, raters showed high consistency, with a range of  from 0.94 to 1.00. 

We coded each experiment based on three aspects: publication status, sample 

characteristics, and experimental design characteristics. For publication status, we coded 



 15 

each experiment with 1) publication year, 2) publication type (peer-reviewed journal 

article, dissertation, conference abstract, preprint, and unpublished dataset), and 3) 

publication status (journal articles coded as published, with all remaining coded as 

unpublished). Regarding sample characteristics, we coded each experiment with 1) 

sample size, 2) gender ratio, 3) mean age, and 4) country of origin.  

Regarding experimental design characteristics, we first coded each experiment based 

on TMR cueing stages, such that whether TMR was administered during N2, SWS, 

REM, unspecified (i.e., when TMR was administered without EEG monitoring), or 

wakefulness. If cues were delivered during both N2 and SWS, the study was coded as 

SWS, and all N2 and SWS TMR studies were further combined as NREM. We then 

coded sleep duration as a continuous variable on how long participants were given to 

sleep, ranging from 0.67 to 8 hours.  

Learning tasks used in each experiment were categorized as declarative memory, 

skill learning, conditioning, and other types of learning. We then examined each 

outcome measurement, and coded them into one of five categories: recall, recognition, 

behavioral performance, subjective ratings, and SCR.  

Lastly, we coded whether TMR was administered using a between- or a within-

subject design, and which sensory modality was used in TMR cueing, including 

auditory_nonverbal vs. auditory_verbal vs. olfactory cues.  

Following moderator analyses, we conducted focal analyses based on tasks and 

experimental conditions of interest, as opposed to the all-inclusive nature of the main 

analyses. Specifically, we selected TMR studies focusing on spatial learning that used 

spatial object-location tasks and navigation tasks (e.g., Rasch et al., 2007; Rudoy et al., 
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2009; Shanahan et al., 2018; Shimizu et al., 2018). A second topic covered associative 

learning tasks in which participants learned stimuli pairings (e.g., spoken words/sounds 

to be paired with words/pictures, e.g., Cairney, Sobczak, Lindsay & Gaskell, 2017; 

Cairney et al., 2018; Fuentemilla et al., 2013). A third topic included TMR studies that 

examined language learning, including foreign vocabulary acquisition, grammatical 

learning, and generalization (e.g., Batterink & Paller, 2017; Cordi, Schreiner & Rasch, 

2018; Schreiner & Rasch, 2015a, 2017). For false memories, identified tasks typically 

used either Deese-Roediger-McDermott procedures or reality monitoring tasks (Cousins, 

2014, unpublished dissertation; Rihm, Diekelmann, Born & Rasch, unpublished dataset; 

Vargas, 2018 unpublished dissertation). In addition to these analyses focused on 

declarative memories, we examined studies involving skill learning because of their 

implications in enhancing motor performance and thus motor rehabilitation. We planned 

to focus on performance measures of reaction speed and accuracy (e.g. Antony et al., 

2012; Cousins et al., 2016; Laventure et al., 2016), as well as explicit knowledge of 

motor sequences in skill learning (e.g., Cousins et al., 2014; Diekelmann et al., 2016). 

Lastly, we synthesized effect sizes from studies with translational implications in clinical 

settings, namely cognitive bias modification (e.g., Groch et al., 2016; Groch et al., 

2017), emotional memories (e.g., Ashton et al., 2018; Cairney et al., 2014; Lehmann et 

al., 2016; Rihm & Rasch, 2015), and fearful memories (e.g., Ai et a., 2015; Hauner et 

al., 2013; He et al., 2015). Coding of study characteristics and categorization of focal 

analyses can be found in Table 1 and in SOM.  

Effect Size Calculation 
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To calculate effect sizes, we used equations recommended in Dunlap, Cortina, 

Vaslow and Burke (1996), Lakens’s (2013, with spreadsheet available at 

https://osf.io/vbdah/), and Morris and DeShon (2002). In TMR research, effect sizes are 

best captured by comparing post-minus-pre-sleep performance changes between cued 

versus uncued conditions in terms of standardized mean differences (i.e., the Cohen’s d 

family). For both within- and between-subject designs, we calculated effect sizes based 

on mean and SDs as a common metric to (a) allow direct comparisons and moderator 

analyses across within- and between-subject designs and (b) avoid the risk of inflated 

effect sizes and false-positive rates (Dunlap et al., 1996; Lakens, 2013, Table 1; Morris & 

DeShon, 2002). Across the whole sleep TMR dataset, 96.7% (205 out of 212) of effect 

sizes were calculated based on means and SDs. 

In a within-subject TMR study, participants receive both cued and uncued treatments 

within a single sleep session (e.g., Rudoy et al., 2009), or in two sleep sessions if the 

design calls for counterbalanced sleep manipulations (Rasch et al., 2007). For within-

subject designs, we searched for post- minus pre-sleep memory change scores for cued 

and uncued conditions and their associated SDs, respectively. Means and associated SDs 

for cued and uncued conditions’ change scores were used to calculate the TMR cueing 

effect in terms of Cohen’s dav, as recommended for meta-analyses (Lakens, 2013, 

Formula 10 and Table 1). If means and S.D.s (or S.E.s) were not reported nor available, 

then we searched for statistical tests that examined the effects. Such statistical tests can 

be reported in one of the three following forms: 1) a within-subject ANOVA that reported 

a 2 (pre- vs. post-sleep) by 2 (cued vs. uncued) interaction; 2) a paired-sample t-test that 

compared changes in memory scores (over sleep) for cued and uncued items; or 3) a 
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paired-sample t-test that compared cued vs. uncued post-sleep memory scores (in these 

cases, the post-sleep memory performance was scaled to the corresponding pre-sleep 

memory performance, see Rasch et al., 2007). Based on these statistics, we transformed 

the reported F-values from the two-way interaction (with one-degree of freedom tests), or 

the t-values from the paired-sample t-tests to Cohen’s dz (see Lakens, 2013, Formula 7; 

Morries & DeShon, 2002, p118, Formula 28).  

When a between-subject design was used, participants in the experimental TMR 

group received sensory cues to reactivate prior learning, whereas participants in the 

control group received learning-incongruent sensory cues or no cues at all (e.g., He et al., 

2015; Rihm, Diekelmann, Born & Rasch, 2014; Sterpenich et al., 2014). Here, to 

calculate TMR effect sizes, we preferentially chose the incongruent cue control group 

over the no-stimulation group to make sensory stimulation constant between groups. The 

no-stimulation group was used when this was the only control group available, or when 

there were multiple TMR experiments and thus multiple control groups were needed (as 

in Sterpenich et al., 2014, when both N2 and REM TMR were examined). For between-

subject TMR studies, we searched for the pre- vs. post-sleep memory change scores from 

the experimental and control group and their associated S.D.s. The change scores and the 

associated S.D.s for experimental and control groups were used to calculate effect size in 

terms of Cohen’s ds (Lakens, 2013, Formula 1). When means and S.D.s/S.E.s were not 

reported in the article, we again searched for key statistical tests that examined TMR 

effects. Here, the effect could be tested in a mixed 2 (between-subject variable: TMR vs. 

control groups) by 2 (within-subject variable, pre- vs. post-sleep) ANOVA. Alternatively, 

the TMR effect could be derived from an independent sample t-test comparing post-sleep 
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memory performance between the experimental and control groups, or comparing pre- 

vs. post-sleep memory change scores between the two groups. We then transformed the 

F- and the t-values from these statistical tests to calculate effect sizes in Cohen’s ds 

(Lakens, 2013, Formula 2; Morries & DeShon, 2002, p118, Formula 27).  

Lastly, as effect sizes in Cohen’s d are upward biased with small samples 

(Cummings, 2012; Lakens, 2013, p.5), we employed Hedges’ g correction function to all 

individual effect sizes: Hedges’ g = Cohen’s d * (1-(3/(4*df-1))), where df denotes degree 

of freedom reported in the statistical test (Hedges, 1981, see also Borenstein et al., 2009; 

Formula 4.22).  

Publication Bias Analyses  

We employed a variety of methods to investigate how publication bias may influence 

the estimated effect sizes from sleep TMR research. We first used a funnel plot to display 

effect sizes against their standard errors. According to Egger and colleagues (Egger, 

Smith, Schneider & Minder, 1997), existence of publication bias can be detected through 

an asymmetric funnel plot because low-powered positive findings are more likely to be 

published than equally powered negative findings. 

Second, we employed the Trim-Fill method (Duval & Tweedie, 2000), which imputes 

artificial effect sizes to make the funnel plot symmetric, and then calculated corrected 

effect sizes. Third, we used publication status (published vs. unpublished) as a categorical 

moderator to assess whether published studies have significantly larger effect sizes than 

unpublished studies.  

Fourth, we chose the three-parameter likelihood selection model (Iyengar & 

Greenhouse, 1988), which extends the original selection model proposed by Hedges 
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(1984) in estimating and correcting publication bias. The three-parameter model includes 

not only the synthesized effect size as a parameter, but also considers the heterogeneity 

across effect sizes, and the probability of nonsignificant studies to be published 

calculated by the maximum likelihood function. In the current study, the three-parameter 

selection model was set as a one-tailed model with the probability of publishing 

nonsignificant studies with a step function cut-off at p = .025 by maximum likelihood, 

following the assumption that directionally consistent and statistically significant studies 

are more likely to be published. Notably, this three-parameter selection model shows 

promising performance to adjust effect size in conditions varying in the synthesized 

effect size, heterogeneity, sample size, and the extent of publication bias across different 

simulation studies (Carter et al., 2019; McShane, Böckenholt, & Hansen, 2016).  

Fifth, we employed a selection model with a priori weight functions that could model 

four different scenarios of publication biases: moderate one-tailed selection, severe one-

tailed selection, moderate two-tailed selection, and severe two-tailed selection (Vevea & 

Woods, 2005). This analysis is advantageous because it shows how estimated effect size 

may change based on the different magnitudes of publication biases. The specification of 

priori weights follows the implementation of Vevea and Woods (2005). 

Meta-analytic Procedure 

We chose a three-level random-effects model over a fixed-effects model. This choice 

of model is based on the following reasoning.  

First, TMR research is characterized by experimental procedures with particular 

memory tasks administered in conjunction with TMR during different sleep stages. 

Therefore, we expected considerable heterogeneity across studies.  
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Second, a random-effects model assumes heterogeneity due to systematic variance 

among studies, above and beyond sampling error. A random-effects model will thus 

generate larger standard errors than fixed-effects models, which will lead to more 

conservative findings and reduced false positives in both overall effect-size estimates and 

moderator analyses.  

Third and most importantly, many TMR experiments have reported more than one 

measure of memory performance, which violates the key assumption of data 

independence in typical random-effect models (Borenstein et al., 2011; Lipsey & Wilson, 

2001). As an extension of the random-effects model, multilevel modelling can model 

both within- and between-study variance and thus can address the issue of dependencies 

(Van den Noortagte & Onghena, 2003). In short, we employed the multilevel modelling 

to model three levels of variance: 1) variances due to sampling error, 2) within-study 

variances among multiple effect sizes from the same experiment, and 3) between-study 

variances among different experiments.  

Meta-analytical Computation 

Individual effect sizes and corresponding variance measures at an outcome level were 

calculated in the Comprehensive Meta-analysis software Version 3.3.070 (Biostate, 

Englewood, NJ, 2014) in Hedges’ g. These values were then fed into the multilevel 

modelling using R package “metaphor” (Viechtbauer, 2010). To examine how much 

effect sizes varied from each other in the multilevel modelling, we used Cochran’s Q 

statistic to test whether individual effect size would vary significantly across the whole 

dataset (i.e., heterogeneity, Borenstein et al., 2011; Cheung, 2014). A significant Q 

statistic indicates significant heterogeneity across studies that cannot be explained by 
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sampling error. We report between-studies I2 that denotes that among observed variance 

across the whole dataset, how much variance in proportional terms is due to differences 

in true effect sizes between studies rather than sampling error (Higgins & Thompson, 

2002). We report τ2 that denotes the variance of estimated effect sizes at an experiment 

level, with τ indicates standard deviation.  

Results 

 The search and selection process of applicable datasets are shown in the Figure 2 

PRISMA flowchart. Included articles can be found in the reference section and are 

marked with asterisks. Sample and experimental characteristics of included experiments 

are shown in Table 1, with corresponding effect sizes provided in both Table 1 and 

Figure 3. All study information and the associated effect size at an outcome level are 

available in SOM. All data and analysis code can be found in 

https://osf.io/kg8y3/?view_only=bfffc7cef5d848afbcf795769d6a7112.  

Study and Sample Characteristics 

We collected 73 articles/abstracts/datasets, which contain n=91 experiments with 

111 independent samples. The total number of participants was 2004. This dataset 

contributed k=212 effect sizes to the meta-analysis, with each experiment 

contributing 2.33 effect sizes on average. Across the whole dataset, the mean sample 

size for each experiment was 22, with an average age of 23 years old. The mean age 

within single experiments ranged from 13- to 71-year-old populations, thus covering 

adolescent, adult, and aging populations. Of these experiments, 51 were conducted in 

Europe, 31 in North America, 5 in Asia, and 1 in South America. Neither age (β=-

https://osf.io/kg8y3/?view_only=bfffc7cef5d848afbcf795769d6a7112
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0.003, 95% CI: [-0.020, 0.015], p=.747) nor female: male ratio (β=-0.443, 95% CI: [-

0.940, 0.055], p=.081) had a significant impact on TMR effects.  

Overall Sleep TMR Effects and Publication Bias Analyses 

Across all TMR sleep experiments/conditions, sleep TMR showed a significant effect 

influencing learning with Hedges’ g= 0.29, 95% CI: [0.21, 0.38], Z=6.711, p<.001. 

Despite this significant TMR effect, there was considerable heterogeneity across effect 

sizes as revealed by heterogeneity analysis, Q(211)= 588, I2=71%,  p<.001, with τ2 

=0.112 at an experimental level (i.e., between-experiment, level-3), τ2=0.031 at an 

outcome level (i.e., within-experiment, level-2). This heterogeneity across studies, and 

the finding that 71% of variances reflects true differences across effect sizes instead of 

sampling errors, strongly suggests that TMR effects must be compared across 

experimental conditions.  

Regarding publication biases, Egger’s test showed that the funnel-plot was 

significantly asymmetric, Z= 8.489, p<.001, indicating the existence of publication biases 

(Figure 4). With the Trim-and-Fill method, 17 artificial effect sizes were imputed to 

adjust for potential biases. For the overall sleep TMR effect, the adjusted effect size was 

still significantly above zero, Hedges’ g=0.18, 95% CI: [0.06, 0.30], Z=2.944, p=.003.  

When publication status (yes vs. no) was examined in the moderator analysis, we 

found that publication status did not significantly influence effect sizes Q(1)=1.005, 

p=.316, with unpublished studies (k=26) associated with a positive yet nonsignificant 

effect size, Hedges’ g=0.18, 95% CI: [-0.06, 0.42], Z=1.447, p=.148, while published 
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studies (k=186) had a significant effect size, Hedges’ g=0.31, 95% CI: [0.22, 0.41], 

Z=6.563, p<.001.   

Results from the three-parameter selection model again showed a significant adjusted 

effect size, with Hedges’ g= 0.13, 95% CI: [0.06, 0.21], Z= 3.472, p<.001. Lastly, 

employing the selection models with a priori weight functions to model different 

magnitudes of publication selection processes (Vevea & Woods, 2005), we found that 

sleep TMR appeared smaller, but remained significant under various scenarios of 

publication biases: Hedges’ g=0.21 for moderate two-tailed selection; g=0.17 for severe 

two-tailed selection; g=0.15 moderate one-tailed selection, except in the severe one-tailed 

selection: g=-0.05.  

Moderator Analyses:  

Because moderator and focal analyses will have fewer effect sizes available, potential 

outliers and influential cases may significantly influence results. We thus excluded data 

designated as statistical outliers (studentized residuals smaller or larger than 3, k=4, with 

2 from SWS TMRs and 2 from REM TMRs, with all outliers’ studentized residuals larger 

than 3, i.e. significantly larger TMR effects). We then conducted influential case analyses 

to identify effect sizes that exert considerable influence on the analyses (see Vechtbauer 

& Cheung, 2010). Influential cases (k=2) matched those designated as statistical outliers. 

This left 208 effect sizes in the sleep TMR analysis. In wake TMR, two influential cases 

were identified and were excluded from the subsequent analyses. Outliers and influential 

case analyses can be found in SOM.  

TMR cueing stage. Our first question concerns whether the TMR effect was specific 

to certain cueing stages. As described in the Methods section (see also Table 1), we 
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coded TMR cueing stages into five categorical moderators: N2 (k=13), SWS (k=174), 

REM (k=15), unspecified (k=6), and wake (k=30). Results show that cueing stage had a 

significant influence on TMR effects Q(4)=10.744, p=.03. Specifically, TMR was only 

significant during the two NREM stages: N2 and SWS. In contrast, TMR was ineffective 

when cueing was administered during REM, or when TMR was not supervised by EEG 

monitoring, or during wakefulness (see Table 2a, Figure 5a).   

Sleep duration. We then coded sleep duration as a continuous variable, ranging from 

0.67 hours’ nap to 8 hours’ overnight sleep. We entered sleep duration as a predictor, 

with TMR effect as the dependent variable in a meta-regression model. Results showed 

that sleep duration did not significantly influence TMR effects, β=0.003, 95% CI [-0.022, 

0.028], p=.795 (see Figure 6).  

In the following moderator analyses, we further excluded 1) unspecified TMR 

experiments because procedurally, this line of research deviates significantly from other 

TMR experiments during which sleep is monitored by EEGs (k=6, Dillon & Babor, 1970; 

Donohue & Spencer, 2011; Göldi & Rasch, 2019; Ritter, Strick, Bos, van Baaren & 

Dijksterhuis, 2012), and 2) one tactile stimulation TMR study (k=2, Pereira et al., 2017) 

because it is the only tactile TMR study available, which limits conclusions concerning 

comparisons with other TMR studies.  

Learning types. Following current theories regarding memory systems, we 

categorized learning tasks into four categories: declarative memory (k=153), skill 

learning (k=25), conditioning (k=10), and the other types of learning (k=12). Descriptions 

of memory tasks and their assigned categories can be found in Table 1. Results showed 
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that TMR effects varied significantly among different learning types; Q(3)=8.056, 

p=.045. Specifically, TMR influenced all types of learning except for conditioning (see 

Table 2b, Figure 5b).  

Outcome measurements. Based on how TMR research measured behavioral 

outcomes, we categorized each outcome into the following categories: recall (k=103), 

recognition (k=14), performance (k=46), SCR (k=4), and subjective ratings (k=33). 

Specific outcomes and their assigned categories can be found in the SOM. Results 

showed that TMR effects varied significantly depending on how outcomes were assessed, 

Q(4)=11.132, p=.025. Specifically, TMR had a significant effect on recall and 

performance measurements, while it had a nonsignificant effect on recognition, SCR, and 

subjective ratings (see Table 2b, Figure 5c).   

TMR design. There was no significant difference between these two types of design, 

Q(1)=0.055, p=.814. Both between- and within-subject designs were associated with 

significant and highly comparable TMR effects (see Table 2c, Figure 5d).  

Cueing modality. All three TMR cueing modalities—auditory_nonverbal, 

auditory_verbal, and olfactory cues—were associated with significant and comparable 

TMR effects: Q(2)=0.688, p=.709 (see Table 2c, Figure 5e).  

Focal Analyses 

In this section, we present a set of analyses that segregated subsets of relatively 

homogenous TMR studies in terms of sleep cueing stages and memory tasks. Because 

only N2 and SWS TMR effects were significant, we combined these experiments as 

NREM TMR (note that the two outliers from NREM TMR and the tactile N2 TMR study 
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was not included in focal analyses). Focal analyses includes the following categories: 

spatial learning (k=43), associative learning (k=30), language acquisition (k=13), false 

memories (k=7), skill learning (k=23), cognitive bias modification (k=36), emotional 

memories (k=12), and fearful memories (k=4). Results are displayed in Figure 7. Studies 

included can be found in Table 1, with effect sizes at an outcome level reported in SOM. 

We present these analyses in a descriptive manner rather than making strong conclusions. 

Spatial memories. In spatial learning tasks, participants learned spatial locations of 

objects on a 2-D grid and practiced placing the objects on the grid followed by feedback 

(e.g., Rasch et al., 2007; Rudoy et al., 2009). We identified 26 experiments and 43 effect 

sizes. For this category, TMR during NREM significantly enhanced spatial memories, 

Hedges’ g=0.30, 95% CI [0.17, 0.44], Z=4.439, p<.001 (see Table 3, Figure 7a). 

Associative learning. Associative learning tasks involve learning associations 

between two stimuli (e.g., word/sound-word/picture pairings). Participants memorized 

associations between two stimuli and then attempted to recall the second member of a 

pair given the first (Cairney et al., 2018; Fuentemilla et al., 2013). We found that TMR 

during NREM sleep significantly improved associative learning in these tasks, Hedges’ 

g=0.17, 95% CI [0.03, 0.30], Z=2.354, p=.019 (see Table 3, Figure 7a).  

Language acquisition. This analysis included two lines of research. For vocabulary 

acquisition, participants memorized novel words (e.g., from a second language) that were 

paired with words from participants’ native language. During sleep, the second-language 

words were presented to reactivate the associated memories (e.g., Batterink et al., 2017; 

Cordi et al., 2018; Schreiner & Rasch, 2015; Schreiner et al., 2015). For grammatical 
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learning and generalization, participants extracted grammatical regularities by learning 

nonword sequences based on feedback (Batterink & Paller, 2017). Eight experiments 

reported nine effect sizes, and results suggest that TMR can significantly promote 

language acquisition in these circumstances, Hedges’ g=0.40, 95% CI [0.14, 0.65], 

Z=3.046, p=.002 (see Table 3, Figure 7a). 

False memories. For this category, TMR was used during sleep to determine whether 

cues could enhance false memories. We identified four experiments that examined this 

type of question (Rihm et al., 2014, unpublished dataset; Cousins, 2014, unpublished 

dissertation, Chapter 5, Experiments 1 and 2; Vargas, 2016, unpublished dissertation, 

Experiment 1). None of the single studies found a significant impact of TMR on false 

memories. Overall, TMR failed to influence false memories during sleep, Hedges’ g = -

0.01, 95% CI [-0.20, 0.18], Z=-0.103, p=.918 (see Table 3, Figure 7a). 

Skill learning. Studies typically included in the skill-learning category are included 

in this analysis. We focused on measures that sometimes are indicative of implicit 

performance, namely speed and accuracy, but the range of designs used does not permit 

any general claims about whether learning was implicit or explicit. Generally, a positive 

TMR effect would indicate faster or more accurate performance in a motor task. With 18 

effect sizes, TMR during NREM enhanced motor performance with a Hedges’ g=0.54, 

95% CI [0.38, 0.69], Z=6.782, p<.001. For comparison purposes, we also analysed 

TMR’s impact on explicit knowledge of skill learning as assessed by explicit memory of 

motor sequence. With five effect sizes, TMR significantly improved conscious recall of 

motor sequences with a Hedges’ g=0.41, 95% CI [0.04, 0.78], Z=2.156, p=.031 (see 

Table 3, Figure 7b).  
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Cognitive bias modifications. Employing a picture-word learning task in which 

words could be used to disambiguate interpretation of an ambiguous picture, Groch et al. 

(2016) investigated whether memories of positive or negative words could be reactivated 

during sleep, aiming to change interpretations of the ambiguous scenes. This procedure 

has been used in adolescents and adults, those who are healthy, and those with social 

anxiety (Groch et al., 2016; Groch et al, 2017). With 36 effect sizes, we found that TMR 

during NREM significantly changed participants’ memory biases with Hedges’ g = 0.18, 

95% CI [0.06, 0.31], Z=2.832, p=.005 (see Table 3, Figure 7b).  

Emotional memories. TMR has been used to influence consolidation of emotional 

memories in both associative learning and spatial learning paradigms. In the current 

analyses, we did not find an overall effect of TMR on emotional memories: Hedges’ g = 

0.10, 95% CI [-0.12, 0.33], Z=0.905, p=.366 (see Table 3, Figure 7b). 

Fearful memories. Researchers have employed TMR to modulate fear memories 

during NREM sleep. For example, TMR was applied to aid in fear extinction (Ai et al., 

2015; Hauner et al., 2013) and exposure therapy for phobia (Rihm et al., 2016). In the 

current analyses, TMR did not induce fear extinction during sleep: Hedges’ g=0.02, 95% 

CI [-0.68, 0.72], Z=0.059, p=.953(see Table 3, Figure 7b). Given that sleep could 

potentially influence fear learning either by strengthening associations or enhancing 

extinction, we also ran an analysis considering TMR effects irrespective of directions. 

Results showed that TMR significantly modulates fearful memories (Hedges' g=0.44, 

Z=2.911, p=.004). 

Discussion 
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Forming enduring memories may depend critically on brain mechanisms whereby 

learned information is spontaneously reactivated, such as during subsequent sleep (Paller 

et al., in press). Although spontaneous memory reactivation has been indirectly observed 

during human sleep (e.g., Deuker et al., 2013; Peigneux et al., 2004), methods to directly 

manipulate this reactivation should be utilized to promote further understanding, both in 

human and nonhuman experiments. The method of targeted memory reactivation (TMR), 

by altering memory processing during sleep, may not only advance our understanding of 

sleep-based memory consolidation, but may also bear significant translational 

implications for enhancing various types of learning. For the first time, by collecting a 

comprehensive dataset of studies and conducting a multilevel random-effects meta-

analysis, we have provided an overall assessment of TMR’s effectiveness. In addition, 

because this dataset comprised studies using a variety of experimental manipulations, we 

were able to provide additional information by evaluating the influence of factors such as 

sleep cueing stages and learning types. 

TMR Effect as a Function of Sleep Stage 

First, sleep TMR was effective in influencing learning and was associated with a 

small-to-moderate effect size: Hedges’ g= 0.29. TMR effects are likely not the same in 

sleep versus wake, as effect sizes from N2 and SWS TMR studies were significantly 

larger than those from REM and wake TMR studies. On the other hand, there are some 

reports of significant findings from REM and wake TMR (e.g., Oudiette et al., wake 

TMR group; Sterpenich et al., 2014 REM TMR group). Given the small number of these 

studies, additional research is likely to produce modified conclusions with respect to 

TMR during these two conditions.   
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Because a meta-analysis aggregates multiple TMR studies, we can investigate 

questions that would be difficult for a single study to address, such as whether sleep 

duration may differentially influence TMR effects. We found that sleep duration did not 

influence TMR effects; TMR benefits memory with cues presented during either 

afternoon or nocturnal NREM. Some have theorized that SWS followed by REM is 

helpful (see Batterink et al., 2017; Tamminen et al., 2017), but further data are needed to 

substantiate this idea. 

Because our primary research question concerns TMR during sleep, wake TMR 

conditions in the present analysis were selected from the identified sleep TMR studies, 

and they were typically matched with sleep TMR in experimental design features such as 

timing of cueing and time of testing. It should be noted that only a tiny proportion of the 

huge number of possible wake conditions have been studied: participants in wake TMR 

could concurrently perform a working memory task, read a book, watch a movie, rest 

while mind-wandering, or engage in numerous other activities during wakeful cueing 

periods. Furthermore, cueing could be followed by new interfering information, as in 

reconsolidation research that also involves memory reactivation (Forcato, Fernandez & 

Pedreira., 2014; Nader, Schafe & Le Doux, 2000; Nader & Hardt, 2009; Schiller et al., 

2010). Another complication is to account for different types of memory that have been 

emphasized in such studies, from simple conditioning to complex episodic memory 

paradigms. All these factors pose challenges in generalizing about wake TMR results. In 

short, given that different experimental procedures with wake TMR can influence 

memory results (e.g., Tambini et al., 2017), it would be inappropriate to generalize from 

the small number of wake TMR findings included in this meta-analysis. 
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TMR’s Impact on Learning  

Sleep has been implicated in many types of learning and memory, within both the 

declarative and nondeclarative categories (Korman et al., 2007; Plihal & Born, 1997, for 

comprehensive reviews see Diekelmann & Born, 2010; Rasch & Born, 2013; Walker & 

Stickgold, 2013). Accordingly, it may not be surprising that TMR during sleep can also 

influence multiple types of learning. However, individual studies varied greatly and many 

studies reported null or contradictory findings. For example, TMR failed to have a 

positive impact on sequential finger tapping when olfactory cues were applied during 

SWS or REM sleep (Rasch et al., 2007). In contrast with these results, subsequent studies 

found that reactivating motor learning using auditory cues during N2 or SWS could 

improve performance (Antony et al., 2012, Cousins et al., 2014; Cousins et al., 2016, 

Laventure et al., 2016; Schönauer et al., 2014). Importantly, different tasks were 

examined in these different studies, and further work is needed to clarify the relevance of 

various task factors. 

By synthesizing available evidence from different learning tasks, the current meta-

analysis shows that TMR can be effective across many types of learning including tasks 

of declarative memory, skill learning, other types of learning, but not with conditioning. 

The present meta-analysis also showed that TMR effects depend on how memories are 

assessed: TMR effects were significant in recall and performance measures, but appeared 

less effective using recognition, SCR, and subjective ratings. Subsequent focal analyses 

showed that TMR during NREM significantly influenced associative learning, spatial 

memories, language acquisition, cognitive bias modification, and skill learning. In 

contrast, TMR has not had a clear influence on false memories. In the current dataset, the 
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Deese-Roediger-McDermott and reality-monitoring paradigms were used to induce false 

memories. Both paradigms are well-established in inducing false memories during 

wakefulness (Gallo, 2010; Gonsalves & Paller, 2000; Gonsalves et al., 2004). However, 

the role of sleep in influencing false memories remains unclear, as sleep either enhanced 

or reduced false memories, with effects moderated by pre-sleep encoding quality and 

retrieval task (e.g., recognition vs. recall, Diekelmann, Landolt, Lahl, Born & Wagner, 

2008; Fenn, Gallo, Margoliash, Roediger & Nusbaum, 2009; Pardilla-Delgado & Payne, 

2017; Payne et al., 2009). By reactivating learning episodes during NREM, TMR might 

be expected to provide some clarification on this question. However, the experiments we 

included in the meta-analysis failed to further influence false memories during sleep. 

The apparent inability of TMR to trigger false memory reactivation may be related to 

an emphasis on SWS. Previous reports suggested that SWS may play a detrimental role 

in the formation of false memories (Pardilla-Dalgardo & Payne, 2017; Payne et al., 

2009), but on the other hand, Vargas (2016, Experiment 1) found a positive correlation 

between time in SWS and false memory performance. Whether false memories can be 

modulated by TMR during REM is currently unknown. 

Notably, one recent study used TMR to alter memories to reverse prior learning 

(Simon et al. 2018), which is in some ways akin to a false memory. A tone associated 

with forgetting was presented during sleep in conjunction with other sounds such that the 

associated object memories were weakened. In this way, TMR can be used to induce 

forgetting for specific memories formed previously. 

TMR has also been used to enhance the rubber-hand illusion (Honma, Plass, Brang, 

Florczak, Grabowecky & Paller, 2016), whereby subjective ownership and proprioceptive 
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drift of a rubber hand was impacted, likely via the integration of multisensory 

information. This phenomenon is similar to a false memory in the sense that both are 

illusory. In this case, integration between visual input of the rubber hand and tactile input 

to participants’ real hand was influenced by TMR during sleep.  

Methodological Implications, Statistical Power, and Publication Bias 

The TMR methodology provides several advantages for understanding sleep-based 

memory consolidation. For example, previous research on sleep and memory emphasized 

comparisons between sleep and wakeful retention intervals to draw inferences about 

sleep’s influence. The waking condition could consist of an ordinary period of 

wakefulness or a night of total sleep deprivation. In either case, the waking condition 

does not provide an ideal contrast for the sleep condition because the two conditions can 

differ in circadian rhythms, sleep drive, and pre-/post-encoding interference (e.g., Pan & 

Rickard, 2015). In contrast, TMR’s key experimental manipulation occurs during a 

specific sleep stage while all other factors are held constant across cued and uncued 

conditions, including circadian influences and amount of pre- and post-encoding 

interference.  

Furthermore, TMR can be advantageous in terms of statistical power given that 

memory reactivation can be manipulated during a single sleep session on a within-subject 

basis. Here, we presented analyses regarding experimental design and cueing modality 

factors. Regarding between- and within-subject designs, our meta-analysis revealed that 

both designs were associated with comparable effect sizes in influencing memory with 

TMR. On average, a between-subject design study would recruit 30 participants, whereas 

a within-subject design study would recruit 20 participants. This difference in sample size 
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is in keeping with the general rule that within-subject designs provide greater statistical 

power than do between-subject designs.  

Regarding cueing modality, we categorized stimulation into three types: 

auditory_nonverbal, auditory_verbal, and olfactory. Consistent with individual reports in 

which verbal and nonverbal cues were directly compared (e.g., Cairney et al., 2017; 

Batterink et al., 2017), cues from all modalities could impact learning. Interestingly, 

nonverbal and verbal cues tend to have the similar effect sizes: 0.26 vs. 0.23. The use of 

verbal cues may greatly expand TMR’s applicability in future studies.  

Despite robust sleep TMR benefits across different memory types and experimental 

paradigms, inspection of the full dataset revealed that more than half of the reported 

results did not reach statistical significance at the conventional .05 false-positive rate: 72 

of 212 sleep TMR effect sizes were significant based on Hedges’ g and the associated 

95% CIs. When constraining analyses to NREM TMR studies, 68 out of 189 effect sizes 

were significant. Given significant TMR effects for sleep and NREM conditions, and in 

moderator analyses, null results from individual studies can best be attributed to either 

moderator choices (e.g., cueing during REM, or when recognition or subjective rating 

was used) or low statistical power in single studies. In order for evidence to accumulate 

and guide future research effectively, we recommend that studies be designed with 

relatively high statistical power based on results provided in the current meta-analysis. 

Publication bias can arise when significant findings consistent with researchers’ 

hypotheses are more likely to be published than nonsignificant findings, which poses 

threats for accurately estimating effect sizes (Rosenthal, 1979). In addition to our efforts 

to include unpublished datasets, we employed a variety of publication bias adjustment 
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analyses (trim-and-fill, 3-parameter selection model, and the a priori weight functions 

model) to evaluate the possibility of overestimated effect sizes. Adjusted effect sizes 

across these analyses remained significant, except for the most extreme case (i.e., the 

severe, one-tail selection model). These results, when evaluated holistically, suggest that 

sleep TMR effects are robust against publication biases. However, as recent simulation 

studies on publication-bias analyses suggested (Carter et al., 2019; McShane et al., 2016), 

each analysis has limitations and relies on some assumptions. Given significant 

heterogeneity across effect sizes and the typical sample sizes involved in TMR research, 

we urge a continued evaluation of possible publication bias. Moreover, to accurately 

assess TMR in the future, high statistical power and pre-registration strategies are 

recommended. Lastly, all members of a scientific community, including researchers, 

reviewers, and journal editors, could work together to combat publication biases by 

encouraging publication of relevant nonsignificant findings.  

Practical Implications 

An intriguing possibility for sleep TMR is to complement wakeful learning to 

enhance cognition and performance (Diekelmann, 2014; Paller, 2017). Among the TMR 

studies reviewed here, a few topics bear high translational implications in educational and 

clinical settings. Boosting language acquisition can be particularly meaningful in 

educational settings. Our dataset included two different types of language studies: 

vocabulary learning (Batterink et al., 2017; Göldi & Rasch, 2019; Schreiner & Rasch, 

2015a; Schreiner et al., 2015) and grammatical learning (Batterink & Paller, 2017). In 

vocabulary learning, participants associated a foreign or a novel word with its translation 

in the participants’ native language. Newly learned words were subsequently replayed 
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during sleep to reactive their associated meanings. In grammatical learning, participants 

viewed nonsense phrases and gradually acquired the underlying grammatical rules via 

trial-and-error. Generalization was assessed when participants were required to generate 

correct sequences with new nonsense words (Batterink & Paller, 2017). Overall, TMR 

during NREM sleep boosted language acquisition, with an effect size of 0.40. Future 

research could include different age groups, such as young children who are just 

beginning to gain competence in their native language and sleep a lot. 

TMR’s effectiveness in facilitating skill learning has intriguing implications for motor 

rehabilitation. Individual studies reported that TMR could enhance participants’ speed 

and/or accuracy (Antony et al, 2012; Laventure et al., 2016), with explicit knowledge of 

motor sequences in some cases (Cousins et al., 2014; Diekelmann et al., 2016). 

Importantly, when all effect sizes were considered in the meta-analysis, TMR appeared 

effective in influencing both performance and knowledge of the learned motor sequences. 

Future studies can test TMR’s potential for facilitating motor or cognitive rehabilitation 

among patient populations in clinical settings.  

TMR may also hold promise for complementing psychotherapy. In the present meta-

analysis, we found that TMR was effective in changing memories with respect to 

ambiguous scenes (e.g., Groch et al., 2016), but did not influence emotional memories or 

weaken fearful memories. However, evidence on whether TMR may influence emotional 

memories and fear extinction was highly mixed (Ai et al., 2015; Ashton et al., 2018; 

Hauner et al., 2013; He et al., 2015; Lehmann et al., 2016). Results have also been mixed 

in TMR fear extinction studies in rodents (Barnes & Wilson, 2014; Purple et al., 2017; 
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Rolls et al., 2013). Given the potential clinical relevance, future TMR studies with these 

types of memory are warranted.  

Neural Mechanisms and Theoretical Implications 

Investigating TMR-elicited neural activity with EEG and fMRI can help researchers 

delineate neural mechanisms of memory reactivation and consolidation during sleep. By 

employing time-frequency analyses to decompose EEG responses, researchers have 

produced evidence implicating theta rhythms and thalamo-cortical spindle oscillations in 

memory reactivation and consolidation (e.g., Antony et al., 2018b; Belal et al., 2018; 

Cairney et al., 2018; Cox et al., 2014; Farthouat et al., 2017; Groch et al., 2017; 

Laventure et al., 2016; Schreiner et al., 2015; Schreiner et al., 2018; Wang et al., 2019). 

In particular, decoding cue-elicited brain activities during both wakeful learning and 

sleep TMR suggests that TMR involves neural patterns resembling prior, wakeful 

learning content (Belal et al., 2018; Schreiner et al., 2018; Shanahan et al., 2018;). During 

sleep, TMR-related neural activity could distinguish between distinctive memory 

representations at a categorical level, with such activity predicting post-sleep memory 

improvement (Cairney et al., 2018; Wang et al., 2019).  

In addition to examining neural activity during sleep (Berkers et al., 2018; 

Diekelmann, Büchel, Born, & Rasch, 2011; Rasch et al., 2007; Shanahan et al., 2018, von 

Dongen et al., 2012), researchers also investigated task-related neural activity following 

sleep TMR. For example, reactivating motor learning during SWS enhanced functional 

connectivity between caudate nucleus and hippocampus when participants were re-tested 

on the motor task (Cousins et al., 2016).  
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In short, beyond behavioral results obtained from the current meta-analysis, neural 

results can provide additional evidence that TMR promotes consolidation via reactivating 

prior learning experiences, as described in the active system consolidation hypothesis 

(Rasch & Born, 2013). Specifically, during NREM sleep, characterized by cortical slow 

oscillations and thalamocortical spindles, covert memory reactivation can transform 

newly acquired, hippocampus-dependent learning such that neocortical representations 

become more stable and resistant to interference.  

More research is needed to understand why memory reactivation during sleep is 

associated with consolidation. Some intriguing clues about relevant neural mechanisms 

have been obtained to date. For example, TMR cues were found to be more effective 

when delivered just after spindle refractory periods (Antony et al., 2018b), and less 

effective when cues were presented closely together (Farthouat et al., 2017; Schreiner et 

al., 2015). Regarding REM’s role in memory consolidation, although the present meta-

analysis did not find a significant REM TMR effect, it remains possible that REM may 

aid consolidation following reactivation during NREM (Batterink et al., 2017; Tamminen 

et al. 2017), as proposed in the two-stage sequential processing account (Giuditta, 2014). 

REM sleep may play an important role for specific types of processing, such as with 

distant associations, information integration, and emotional memories (Cai et al., 2009; 

Sterpenich et al., 2014; Tamminen et al., 2017; Wassing, Lakbila-Kamal, Ramautar, 

Stoffers, Schalkwijk & Van Someren, 2019). Additional studies are warranted to explore 

the impact of REM sleep on memory processing. 

TMR and Reconsolidation 
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Wake TMR studies resemble reconsolidation studies as both procedures involve 

encoding, presentation of memory reminders during wakefulness, and subsequent testing. 

On the other hand, there are notable differences. First, in wake TMR studies memories 

are typically reactivated shortly after encoding (e.g., within minutes or hours), whereas 

reconsolidation paradigms tend to reactivate memories following longer delays. Second, 

wake TMR studies often aim to test whether reactivation during wakefulness stabilizes 

memories, whereas reconsolidation designs introduce interfering information to modify 

original memories (Elsey, Van Ast, & Kindt, 2018; Forcato et al., 2014; Kredlow, Unger, 

& Otto, 2016; Nader et al., 2000; Nader & Hardt, 2009; Schiller et al., 2010). For both 

types of studies, it is of course essential to consider whether results vary depending on the 

type of memory examined (e.g., declarative memory vs. conditioning).  

Although reactivation could render memories labile and make them susceptible to 

interfering information, caution must be exercised before inferring that memories were 

made labile by the experimental manipulation. This issue may be particularly relevant for 

declarative memories, which may remain modifiable indefinitely (Dudai, 2012). As a 

case in point, Diekelmann and colleagues (2011) studied TMR followed by interference 

and found memory impairment after wake TMR, in contrast to the usual memory 

strengthening effect after NREM TMR. An alternative interpretation for the memory 

impairment, however, is that wake TMR in this study functioned to blur the temporal 

distinctiveness of the original information versus the interference information, as odor 

presentation bridged the two task periods. If the original and interfering information were 

less temporally distinct in this condition, poorer memory performance would be 

expected. Therefore, such results do not necessarily provide support for the idea of 
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converting declarative memories into a labile form or for conventional reconsolidation 

models. Nevertheless, further integration between TMR and reconsolidation research 

could deepen our understanding of the mechanisms of memory processing, including 

reactivation, consolidation, and updating. 

Limitations and Ethical Concerns 

Meta-analysis provides a powerful tool to quantitatively estimate the strength of 

experimental manipulations, but results that aggregate and summarize a diverse set of 

paradigms may not be adequate for guiding specific research questions. To overcome this 

limitation, in addition to presenting syntheses of TMR effects across all experiments and 

broadly defined topics, we included focal analyses based on selected homogenous 

manipulations (e.g., NREM only) and learning topics (e.g., associative learning, spatial 

learning, false memory). These focal analyses could be valuable for providing effect-size 

estimates pertaining to specific research questions.  

Another limitation relates to the way memory tasks were categorized in the learning-

type moderator analyses. Many tasks used in TMR studies could not be unambiguously 

categorized (e.g., trust learning, counter-stereotype learning, multisensory integration, 

value-based decision making). Furthermore, some tasks placed in one learning category 

may engage processing that depends on multiple memory systems operative concurrently. 

For example, artificial grammar learning and other types of statistical learning may 

involve both implicit learning and declarative memory (e.g., Batterink, Reber, Neville, & 

Paller, 2015). Some skill learning may engender explicit remembering of motor 

sequences (i.e., declarative memories) and may engage hippocampal contributions (e.g., 

Antony et al., 2012; Cousins et al., 2016). It is possible that the combination of explicit 
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and implicit learning of motor sequences makes them more susceptible to memory 

reactivation during SWS, with corresponding changes in hippocampal-striatal networks 

(Albouy et al., 2008; Cousins et al., 2016; Walker, Stickgold, Alsop, Gaab & Schlaug, 

2005). Acknowledging this limitation, we present individual effect size and variance data 

for currently available TMR studies with which researchers can re-analyze the data based 

on any categorization. 

 TMR may be applicable for many beneficial purposes, but can it also be employed 

maliciously for mind control? Here it is important to distinguish between new learning 

and prior learning. People may be able to acquire new information while asleep, but 

perhaps only in restricted circumstances (e.g., Andrillon et al., 2017; Arzi et al., 2012; 

Züst et al., 2019). In the case of conditioning during sleep, the idea of introducing new 

associations without the individual’s awareness parallels the idea of subliminal 

conditioning while awake. Although the term “sleep learning” usually has the 

connotation of acquiring new information, the typical process of learning that begins 

during wakefulness may continue during sleep, in which case sleep is indeed relevant for 

learning. The effectiveness of TMR is generally contingent on prior learning and 

associations made with specific cue stimuli (Cairney et al., 2016; Creery et al., 2015). 

When the learning occurs with a person’s full knowledge and compliance, concerns about 

mind control are mitigated. However, variants of TMR could be used in future research to 

attempt to selectively weaken memories (as in Simon et al., 2018), or to change 

memories, perhaps to the point of creating a false memory or providing a conditioned 

association that was not present during waking. We thus advocate for the continuing 

evaluation of ethical concerns as research in this area continues to expand.  
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Unanswered Questions and Future Directions  

Although our results showed that TMR could significantly modify memory 

processing during NREM sleep, effect sizes varied across studies and tasks, as evidenced 

by observed heterogeneity. The overall effect size was small to moderate in Cohen’s 

terms (Cohen, 1988). Thus, one future direction is to investigate how to improve TMR 

effects. Recent findings indicate that the timing of cue presentation relative to spindles 

and to the phase of slow oscillations can be critical to the degree of reactivation and 

consolidation (Antony et al., 2018b; Batterink et al., 2016; Göldi et al., 2019; Shimizu et 

al., 2018). Thus, a promising research direction will be to test the timing of cueing in 

relation with slow oscillations and/or spindles via techniques such as closed-loop 

stimulation.  

One intriguing yet unanswered question regards whether targeted and spontaneous 

memory reactivation entail the same or qualitatively different neural mechanisms. Cueing 

may simply bias spontaneous reactivation (e.g., Bendor & Wilson, 2012), but there may 

be important differences. Because neural signals that completely and unequivocally 

indicate memory reactivation during sleep have not yet been established, this question 

remains open. Future research could address this question by comparing neural activity 

associated with targeted versus spontaneous reactivation using various memory 

paradigms.  

Another question about TMR is whether it impacts other learning. That is, if TMR 

improves memory for cued information, does it harm memory consolidation for 

information acquired via other recent learning? If some information is reactivated, other 

information may be less likely to be reactivated. Investigations are limited in that they 
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cannot measure all memories that people recently acquired that might be influenced by 

TMR. One sense in which memory reactivation can have additional effects is in terms of 

interrelationships among memories. That is, memory storage may normally involve 

competition, such that enhanced storage of some information would be expected to have 

repercussions (Norman, Newman, & Detre, 2007; Paller et al., in press). In this regard, 

TMR research has begun to examine how competing memories interact during sleep 

(Antony et al, 2018a; Oyarzún et al. 2017), with evidence showing that competition may 

weaken memories that are tightly interrelated with cued information.  

Many other questions remain to be tested in relation to potential applications of TMR 

outside the laboratory. One recent study investigated TMR for vocabulary learning in a 

naturalistic home sleep setting (i.e., unsupervised TMR) using auditory cues presented 

without EEG monitoring (Göldi & Rasch, 2019). TMR benefits were achieved only 

among participants for whom sleep was not disturbed by the cues. These results 

underscore the importance of avoiding arousal from sleep for memory improvement to be 

observed. Finally, whereas lab TMR studies generally include only one period of sleep 

with TMR, it will be important to determine whether TMR can have cumulative effects 

across multiple sleep sessions. 

Conclusion 

To conclude, by aggregating effect sizes across a comprehensive dataset of TMR 

research, we present the first quantitative synthesis of the effectiveness of TMR under 

various conditions. Despite some inconsistent results from single studies, meta-analytical 

results provide compelling evidence that applying sensory cues during NREM sleep can 

reactivate associated memories and promote memory consolidation. TMR effects are 
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found across a range of learning domains, including but not limited to declarative 

memory and skill learning. Whether TMR can be meaningfully beneficial in educational 

and clinical settings can only be answered via future studies in such settings. We hope 

this review and meta-analysis will facilitate new studies to advance this exciting field.  
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Table1. Sample, experimental characteristics, and effect sizes information of TMR experiments/tasks included in the meta-analysis.  

References Sample Characteristics TMR Experimental Characteristics Effect Sizes 

 Sample 

Size 

Female 

Ratio 

Age Country Cueing 

Stages 

Sleep  

Length 

Memory                     

Task 

Learning 

Type 

Focal 

Analyses 

Design Cueing 

Modality 

Hedges     

’ g 

95%CI      

LL 

95% CI 

UL 

    Z   p 

Dillon & Babor, 1970 12 0.00  20.5 US Unspecified 8 Word-Word Learning Declarative  Within Verbal  0.40 -0.17 0.97 1.388 .165 

Tilley, 1979 N2 8 NA NA US N2 8 Word-Picture Learning Declarative Associative  Within Verbal 1.12 0.29 1.95 2.658 .008 

Tilley, 1979 REM 8 NA NA US REM 8 Word-Picture Learning Declarative  Within Verbal 0.17 -0.46 0.79 0.525 .600 

^Guerrien et al., 1989 10 0.00  20.0 US REM 8 Morse Code Learning Declarative  Between Nonverbal 3.47 1.58 5.36 3.601 < .001 

^Smith & Weeden, 1990 10 NA 19.4 Canada REM 8 Wff n' Proof Logic Game Declarative  Between Nonverbal 3.17 1.39 4.95 3.482 < .001 

Rasch et al., 2007 Exp. 1 Spatial  18 0.56  24.1 Germany SWS 7.5 Spatial Location Declarative Spatial  Within Olfactory 0.69 0.19 1.18 2.717 .007 

Rasch et al., 2007 Exp. 1 Skill     SWS 7.5 Finger Sequence Tapping Skill Skill  Within Olfactory -0.08 -0.52 0.37 -0.339 .734 

Rasch et al., 2007 Exp. 3 Spatial 17 0.53  25.0 Germany REM 7.5 Spatial Location Declarative  Within Olfactory -0.05 -0.51 0.40 -0.236 .813 

Rasch et al., 2007 Exp. 3 Skill     REM 7.5 Finger Sequence Tapping Skill  Within Olfactory -0.21 -0.67 0.25 -0.905 .366 

1Rasch et al., 2007 Exp. 5 12 0.50  25.4 Germany SWS 1.5 Spatial Location Declarative Spatial  Within Olfactory 0.64 0.05 1.22 2.136 .033 

Rudoy et al., 2009 12 0.83  21.5 US SWS 1.5 Spatial Location Declarative Spatial  Within Nonverbal 0.48 -0.08 1.04 1.671 .095 

Diekelmann et al., 2011 12 0.17  22.3 Germany SWS 0.67 Spatial Location Declarative Spatial  Within Olfactory 0.74 0.08 1.40 2.207 .027 

Donohue & Spencer, 2011 32 0.63  20.8 US Unspecified 8 Word-Word Learning Declarative  Between Nonverbal 0.00 -0.68 0.68 0.000 1.000 

Antony et al., 2012 16 0.38  21.0 US SWS 1.5 Finger Sequence Tapping Skill Skill  Within Nonverbal 0.46 -0.03 0.96 1.836 .066 

Ritter et al., 2012 30 0.87  21.3 Netherlands Unspecified 8 Creative Solutions Declarative  Between Olfactory 1.07 0.31 1.82 2.780 .005 

van Dongen et al., 2012 22 0.73  22.5 Netherlands SWS 2 Spatial Location Declarative Spatial  Within Nonverbal -0.21 -0.61 0.20 -0.989 .323 

Fuentemilla et al., 2013 9 0.67  41.0 Spain SWS 8 Sound-Word Learning Declarative Associative  Within Nonverbal 0.70 0.03 1.38 2.045 .041 

Hauner et al., 2013 15 0.53  24.5 US SWS 1.5 Fear Extinction Conditioning Fear Within Olfactory 0.51 0.00 1.03 1.968 .049 

Oudiette et al., 2013 15 0.60  20.7 US SWS 1.5 Spatial Location Declarative Spatial  Within Nonverbal 0.24 -0.25 0.72 0.962 .336 

Table



Cairney et al., 2014 Neutral  15 0.80  20.4 UK SWS 1.5 Spatial Location Neutral 

Picture  

Declarative Spatial  Within Nonverbal 0.08 -0.40 0.56 0.325 .745 

Cairney et al., 2014 Negative      SWS 1.5 Spatial Location 

Negative Picture  

Declarative Emotion Within Nonverbal 0.19 -0.30 0.67 0.758 .449 

Cordi et al., 2014 16 0.63  23.9 Switzerland REM 4 Spatial Location Declarative  Within Olfactory 0.08 -0.38 0.55 0.346 .729 

Cousins et al., 2014 16 0.50  24.8 UK SWS 8 SRTT Skill Skill  Within Nonverbal 0.87 0.31 1.43 3.064 .002 

Cox et al., 2014 28 0.89  20.1 Netherlands SWS 2 Spatial Location Declarative Spatial  Within Olfactory 0.03 -0.33 0.39 0.137 .891 

Rihm et al., 2014 Spatial  21 0.71  23.4 Switzerland SWS 7.5 Spatial Location Declarative Spatial  Between Olfactory 0.95 0.08 1.82 2.134 .033 

Rihm et al., 2014 unpublished 

False memories 

    SWS 7.5 DRM  Declarative False 

Memories 

Between Olfactory 0.10 -0.72 0.93 0.245 .807 

Schönauner et al., 2014 28 NA 22.3 Germany SWS 3 Finger Sequence Tapping Skill Skill  Within Nonverbal 0.47 0.09 0.85 2.432 .015 

Sterpenich et al., 2014 N2 28 0.50  21.6 Belgium N2 8 Sound-Negative/Neutral 

Picture Learning 

Declarative Emotion Between Nonverbal 0.26 -0.46 0.98 0.703 .482 

Sterpenich et al., 2014 REM 28 0.50  21.6 Belgium REM 8 Sound-Negative/Neutral 

Picture Learning 

Declarative  Between Nonverbal -1.01 -1.78 -0.24 -2.586 .010 

Ai et al., 2015 46 0.59  22.0 China SWS 1.5 Fear Extinction Conditioning Fear Between Nonverbal -0.71 -1.30 -0.12 -2.370 .018 

Creery et al., 2015 20 0.60  21.0 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.25 -0.18 0.68 1.157 .247 

^He et al., 2015 3 mins 35 0.49  23.8 China SWS 4 Fear Extinction Conditioning Fear Between Nonverbal 1.94 1.15 2.73 4.805 < .001 

^He et al., 2015 10 mins 31 0.55  23.6 China SWS 4 Fear Extinction Conditioning Fear Between Nonverbal 4.83 3.44 6.21 6.838 < .001 

Hu et al., 2015 38 0.50  21.8 US SWS 1.5 Counter-bias Learning Others  Within Nonverbal 0.51 0.18 0.84 3.011 .003 

Rihm & Rasch. 2015 N2 14 1.00  23.3 Switzerland N2 4 Evaluative Conditioning Conditioning Emotion Within Nonverbal -0.11 -0.61 0.39 -0.445 .656 

Rihm & Rasch. 2015 REM 16 1.00  23.3 Switzerland REM 4.5 Evaluative Conditioning Conditioning  Within Nonverbal 0.07 -0.41 0.55 0.287 .774 

Schreiner & Rasch, 2015  15 0.53  25.1 Switzerland SWS 3 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal 0.50 -0.04 1.05 1.821 .069 



Schreiner, Lehmann et al., 2015 

Control 

16 0.63  23.3 Switzerland SWS 3 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal 0.82 0.28 1.37 2.962 .003 

Schreiner, Lehmann et al., 2015 

Correct 

14 0.71  22.7 Switzerland SWS 3 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal 0.77 0.20 1.34 2.659 .008 

Schreiner, Lehmann et al., 2015 

False 

13 0.69  21.2 Switzerland SWS 3 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal 0.95 0.32 1.57 2.964 .003 

Cairney et al., 2016 Direct 30 0.53  19.9 UK SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.42 0.05 0.78 2.247 .025 

Cairney et al., 2016 Indirect     SWS 1.5 Picture-Word Learning Declarative Associative Within Nonverbal -0.03 -0.38 0.32 -0.167 .867 

Cousins et al., 2016 22 0.36  23.5 UK SWS 8 SRTT Skill Skill Within Nonverbal 0.40 -0.03 0.83 1.837 .066 

Diekelmann et al., 2016 36 0.53  21.9 Germany SWS 8 SRTT Skill Skill Between Olfactory 0.35 -0.31 1.00 1.044 .297 

Groch et al., 2016 Adolescent 21 0.29  12.3 Switzerland SWS 8 CBM Declarative CBM Within Verbal 0.31 -0.11 0.74 1.440 .150 

Groch et al., 2016 Adult 19 0.74  22.2 Switzerland SWS 8 CBM Declarative CBM Within Verbal 0.30 -0.15 0.75 1.300 .193 

Honma et al., 2016 16 0.75  20.1 US SWS 8 Rubber Hand Illusion Others  Within Nonverbal 0.98 0.38 1.58 3.209 .001 

Laventure et al., 2016 N2 39 0.41  25.1 Canada N2 8 Finger Sequence Tapping Skill Skill Between Olfactory 0.94 0.27 1.61 2.734 .006 

Laventure et al., 2016 REM 37 0.41  24.7 Canada REM 8 Finger Sequence Tapping Skill  Between Olfactory 0.27 -0.38 0.93 0.825 .409 

Lehmann et al., 2016 SWS 

Emotion 

21 0.76  22.1 Switzerland SWS 3 Word-Emotional Picture 

Learning 

Declarative Emotion Within Verbal  0.54 0.10 0.98 2.394 .017 

Lehmann et al., 2016 SWS 

Neutral 

    SWS 3 Word-Neutral Picture 

Learning 

Declarative Associative Within Verbal  0.16 -0.25 0.57 0.756 .450 

Lehmann et al., 2016 REM 

Emotion 

20 0.80  22.3 Switzerland REM 6 Word-Emotional Picture 

Learning 

Declarative  Within Verbal  0.21 -0.22 0.63 0.944 .345 

Lehmann et al., 2016 REM 

Neutral 

    REM 6 Word-Neutral Picture 

Learning 

Declarative  Within Verbal  -0.25 -0.68 0.18 -1.150 .250 

Rihm et al., 2016 36 0.89  25.7 Switzerland SWS 1.5 Phobia Exposure 

Therapy 

Others Fear Between Olfactory 0.21 -0.43 0.85 0.650 .516 



Batterink & Paller, 2017 35 0.66  22.4 US SWS 1.5 Artificial Language 

Learning 

Declarative Language Between Verbal  0.76 0.09 1.44 2.231 .026 

Batterink et al., 2017 Nonverbal 16 0.54  20.7 US SWS 1.5 Sound-Word Learning 

(Foreign) 

Declarative Language Within Nonverbal -0.07 -0.54 0.39 -0.307 .759 

Batterink et al., 2017 Verbal 10 0.54  20.7 US SWS 1.5 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal  -0.03 -0.60 0.53 -0.118 .906 

Cairney et al., 2017 Exp. 1 

Nonverbal 

28 0.00  20.3 UK SWS 8 Sound-Word Learning Declarative Associative Within Nonverbal 0.47 0.09 0.85 2.428 .015 

Cairney et al., 2017 Exp. 1 

Verbal 

    SWS 8 Speech-Word Learning Declarative Associative Within Verbal 0.55 0.17 0.94 2.798 .005 

Cairney et al., 2017 Exp. 2 

Nonverbal 

23 0.00  21.0 UK SWS 8 Sound-Word Learning Declarative Associative Within Nonverbal 0.54 0.11 0.96 2.479 .013 

Cairney et al., 2017 Exp. 2 

Verbal 

    SWS 8 Speech-Word Learning Declarative Associative Within Verbal -0.18 -0.58 0.21 -0.905 .365 

Farthouat et al., 2017 14 0.64  22.4 Belgium SWS 1.5 Word-Word Learning Declarative Associative Within Verbal  0.26 -0.26 0.77 0.980 .327 

Groch et al., 2017 a Control 13 0.31  13.2 Switzerland SWS 8 CBM Declarative CBM Within Verbal 0.03 -0.49 0.56 0.120 .904 

Groch et al., 2017 a             

Social Anxiety 

13 0.62  13.4 Switzerland SWS 8 CBM Declarative CBM Within Verbal 0.16 -0.36 0.68 0.604 .546 

Groch et al., 2017 b 16 0.69  20.3 Switzerland SWS 8 Picture-Word Learning Declarative Associative Within Verbal  0.14 -0.36 0.63 0.534 .594 

Hennies et al., 2017 28 0.39  22.7 UK SWS 8 Memory Abstraction Declarative  Between Nonverbal -1.00 -1.77 -0.24 -2.570 .010 

Oyarzún et al.,2017 Contiguous 22 0.73  23.2 Spain SWS 1 Spatial Location Declarative Spatial Within Nonverbal 0.24 -0.16 0.65 1.171 .242 

Oyarzún et al.,2017 Delayed 28 0.71  23.2 Spain SWS 1 Spatial Location Declarative Spatial Within Nonverbal -0.44 -0.82 -0.06 -2.285 .022 

Pereira et al., 2017 29 0.62  24.2 Brazil N2 1.5 Finger Sequence Tapping Skill Skill Between Tactile -0.57 -1.30 0.16 -1.541 .123 

Tamminen et al., 2017 20 0.80  19.3 UK SWS 1.5 Word-Word Learning Declarative Associative Within Verbal  -0.13 -0.56 0.29 -0.622 .534 

Ai et al., 2018 47 0.85  23.4 China N2 1.5 Auction decision making Others  Within Verbal 0.66 0.35 0.97 4.124 < .001 



Antony et al., 2018a       

Separate Spatial 

30 0.73  26.5 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.37 0.01 0.73 2.007 .045 

Antony et al., 2018a        

Separate Associative 

    SWS 1.5 Sound-Picture Learning Declarative Associative Within Nonverbal -0.04 -0.38 0.31 -0.200 .842 

Antony et al., 2018a 

Competitive Spatial 

30 0.70  26.5 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal -0.17 -0.52 0.18 -0.949 .343 

Antony et al., 2018a  

Competitive Associative 

    SWS 1.5 Sound-Picture Learning Declarative Associative Within Nonverbal -0.09 -0.44 0.26 -0.493 .622 

Antony et al., 2018b           

Spatial 

18 0.50  21.8 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.54 0.06 1.01 2.223 .026 

Antony et al., 2018b   

Associative 

    SWS 1.5 Sound-Picture Learning Declarative Associative Within Nonverbal 0.10 -0.34 0.54 0.443 .658 

Ashton et al., 2018         

Negative Associative 

19 0.68  22.0 UK SWS 1.5 Sound-Negative Picture 

Learning 

Declarative Emotion Within Nonverbal 0.03 -0.40 0.46 0.150 .881 

Ashton et al., 2018            

Neutral Associative 

    SWS 1.5 Sound-Neutral Picture 

Learning 

Declarative Associative Within Nonverbal 0.10 -0.33 0.53 0.447 .655 

Ashton et al., 2018          

Negative Spatial 

    SWS 1.5 Spatial Location_ 

Negative Picture 

Declarative Emotion Within Nonverbal -0.33 -0.77 0.11 -1.457 .145 

Ashton et al., 2018            

Neutral Spatial 

    SWS 1.5 Spatial Location_ Neutral 

Picture 

Declarative Spatial Within Nonverbal -0.22 -0.66 0.22 -0.987 .324 

Cairney et al., 2018 27 0.70  19.7 UK SWS 1.5 Word-Picture Learning Declarative Associative Within Verbal 0.50 0.09 0.90 2.420 .016 

Cordi et al., 2018 23 0.65  71.0 Switzerland SWS 3 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal 0.06 -0.33 0.46 0.309 .758 

Johnson et al., 2018 9 0.56  27.9 US SWS 8 Target Throwing Skill Skill Between Nonverbal 1.85 0.36 3.34 2.441 .015 

Klinzing et al., 2018 

Acetycholine 

15 0.00  23.9 Germany SWS 0.67 Spatial Location Declarative Spatial Within Olfactory 0.42 -0.08 0.92 1.628 .103 



Klinzing et al., 2018          

Control 

14 0.00  23.9 Germany SWS 0.67 Spatial Location Declarative Spatial Within Olfactory 0.98 0.36 1.59 3.128 .002 

Seibold et al., 2018 19 0.63  22.1 Germany SWS 0.67 Spatial Location Declarative Spatial Within Olfactory 0.22 -0.22 0.66 0.969 .333 

Shanahan et al., 2018 18 0.61  25.1 US SWS 1.25 Spatial Location Declarative Spatial Within Olfactory 0.33 -0.15 0.81 1.355 .175 

Shimizu et al., 2018 37 0.43  25.1 US SWS 1.5 Spatial Navigation  Declarative Spatial Between Nonverbal 1.34 0.64 2.05 3.750 < .001 

Simon et al., 2018 18 0.78  20.2 US SWS 8 Directed Forgetting  Declarative  Within Nonverbal 0.74 0.24 1.25 2.891 .004 

2Strachan et al., 2018, preprint 23 0.52  21.3 UK SWS 1.5 Trust Learning Others  Within Nonverbal 0.12 -0.28 0.52 0.584 .559 

Göldi & Rasch, 2019 66 NA 21.9 Switzerland Unspecified 8 Word-Word Learning Declarative  Within Verbal -0.09 -0.33 0.15 -0.752 .452 

Göldi et al., 2019 16 0.81  20.9 Switzerland SWS 3 Word-Word Learning 

(Foreign) 

Declarative Language Within Verbal 0.52 0.02 1.02 2.030 .042 

Humiston & Wamsley 2019 31 0.52  19.5 US SWS 1.5 Counter-bias Learning Others  Within Nonverbal -0.06 -0.41 0.29 -0.333 .739 

Johnson et al., 2019 25 0.52  26.0 US SWS 1 Target Throwing Skill Skill Between Nonverbal 0.82 0.00 1.63 1.966 .049 

Vargas et al., 2019 24 NA 21 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.24 -0.17 0.64 1.148 .251 

Wang, Antony et al., 2019 24 0.58  22.3 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.30 -0.10 0.69 1.466 .143 

Bar et al., 2019, preprint 19 0.58  27.4 Israel SWS 2 Spatial Location Declarative Spatial Within Olfactory 0.21 -0.23 0.64 0.934 .350 

Cheng et al., unpublished  20 0.70  20.5 US SWS 1.5 Motor Learning Skill Skill Within Nonverbal 0.53 0.08 0.99 2.280 .023 

Gao et al., 2019 abstract 41 0.70  21.2 US SWS 8 Lecture Learning Declarative  Between Nonverbal 0.39 -0.30 1.07 1.110 .267 

Schechtman et al., 2019,   

preprint 

31 0.68  20.8 US SWS 1.5 Spatial Location Declarative Spatial Within Nonverbal 0.53 0.16 0.89 2.809 .005 

Cousins, 2014, Dissertation 

Chapter 5, Exp. 1 

15 0.73  20.3 UK SWS 8 DRM  Declarative False 

Memories 

Within Nonverbal 0.13 -0.35 0.61 0.513 .608 

Cousins, 2014, Dissertation 

Chapter 5, Exp. 2 

16 0.44  23.9 UK SWS 8 DRM  Declarative False 

Memories 

Within Verbal -0.20 -0.67 0.27 -0.831 .406 



Konrad, 2014, Dissertation     

Exp. 3 

11 0.00  22.5 Germany SWS 1 Method of Loci Declarative Associative Within Nonverbal 0.10 -0.44 0.65 0.369 .712 

Vargas, 2016, Dissertation    

Exp. 1 

14 NA 25.5 US SWS 1.5 Reality-Monitoring Declarative False 

Memories 

Within Nonverbal 0.04 -0.46 0.53 0.139 .889 

Vargas, 2016, Dissertation     

Exp. 2 

16 NA 22.5 US SWS 1.5 Word-Picture Learning Declarative Associative Within Verbal  -0.03 -0.50 0.43 -0.138 .890 

 

Notes: NA: not available. REM: rapid eye movement, SWS: slow-wave sleep. Sleep length is given in hours. SRTT: serial reaction time task; DRM: Deese-Roediger-McDermott false memory task; CBM: cognitive bias modification. CI: confidence 

interval. UL and LL refer to the upper and lower limit of the 95% confidence interval of effect sizes. When age range instead of mean age was reported, we calculated the midpoint of the age range as an estimate of the sample’s mean age. ^ Indicates 

statistical outliers based on studentized residuals. For details of outlier and influence case analyses, please see SOM. 1: Rasch et al. (2007) Exp. 5, the effect size was calculated based on the comparison between sleep- and wake-TMR. 2, Strachan et al., 

2018, preprint was coded as “unpublished” in the analyses as we finished the literature search in June, 2019. This paper was subsequently published in July, 2019, and was updated in the reference list as Strachan et al. (2019).   



Table 2a. Statistics from cueing stages moderator analyses. 

 

Moderators 

 

n(N) k Hedges’ 

g 
95% CI QB Z p 

Cueing Stages     10.744  .030 

N2 6 (165) 13 0.32  [0.04, 0.60]  2.232 .026 

SWS 70 (1471) 174 0.27  [0.20, 0.35]  6.934 <.001 

REM 7 (142) 15 -0.06   [-0.31, 0.18]  -0.501 .616 

  Unspecified 4 (140) 6  0.26   [-0.11, 0.62]  1.383  .167 
 

Wake   18 (366) 30  0.07   [-0.09, 0.23]  0.853  .394 
 

 

 

Table 2b. Statistics from learning and outcome measurements moderator analyses. 

 

Moderators 

 

n(N) k 
Hedges’ 

g 
95% CI QB Z p 

Learning Type     8.056  .045 

Declarative 62 (1219) 153 0.23  [0.15, 0.31]  5.563 <.001 

Skill 12 (283) 25 0.44  [0.25, 0.64]  4.438 <.001 

Conditioning 4 (91) 10 -0.03  [-0.35, 0.29]  -0.200 .841 

Others 6 (191) 12 0.38  [0.13, 0.62]  2.991 .003 

Outcome 
Measurements     11.132  .025 

Recall 61 (1137) 103 0.24  [0.16, 0.33]  5.676 <.001 

Recognition 9 (157) 14 0.18  [-0.04, 0.40]  1.619 .105 

Performance 27 (673) 46 0.40  [0.27, 0.53]  6.103 <.001 

SCR 4 (91) 4 -0.08  [-0.44, 0.28]  -0.423 .672 

Subjective Rating 8 (135) 33 0.11  [-0.05, 0.27]  1.355 .175 

 

 

 

 

 

 

Table



Table 2c. Statistics from experimental designs and cueing modalities moderator analyses. 

 

Moderators 

 

n(N) k Hedges’ 

g 
95% CI QB Z p 

Experimental Design     0.055  .814 

Within 68 (1303) 173 0.25  [0.17, 0.34]  6.192 <.001 

Between 14 (446)  27 0.28  [0.07, 0.50]  2.595 .009 

Cueing Modality     0.688  .709 

Auditory_Verbal 25 (472) 74 0.26  [0.13, 0.39]  3.825 <.001 

Auditory_Nonverbal 42 (956) 94 0.23  [0.13, 0.34]  4.365 <.001 

Olfactory 17 (372) 32 0.32  [0.15, 0.50]  3.566 <.001 

 

Notes: n, number of experiments/datasets; N, number of participants; k, number of effect sizes.  



Table 3. Statistics from focal analyses. 

 

Focal analyses 

 

n(N) k Hedges’ 

g 
95% CI Z p 

Spatial Learning 26 (553) 43 0.30 [0.17, 0.44] 4.439 <.001 

Associative Learning 16 (320) 30 0.17 [0.03, 0.30] 2.354 .019 

Language 

Acquisition 

9 (158) 13 0.40 [0.14, 0.65] 3.046 .002 

False Memories 4 (66) 7 -0.01 [-0.20, 0.18] -0.103 .918 

Skill Learning 10 (229) 23 0.51 [0.37, 0.65] 7.108 <.001 

Cognitive Bias 

Modification 

4 (66) 36 0.18 [0.06, 0.31] 2.832 .005 

Emotional Memories 5 (97) 12 0.10 [-0.12, 0.33] 0.905 .366 

Fearful Memories 3 (97) 4 0.02 [-0.68, 0.72] 0.059 .953 

 

Notes: n, number of experiments/datasets; N, number of participants; k, number of effect 

sizes. 
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Figure Captions 

Figure 1a: Schematic of the typical procedure in a TMR experiment (reprinted from Paller, 

2018). 1b: Number of TMR articles (including both human/non-human empirical 

studies and review articles) published by year since Rasch et al. (2007). The last data 

point represents the annualized number based on number of articles published from 

January to June 2019. 

Figure 2: A PRISMA flow chart of literature search and inclusion. 

Figure 3: A forest plot displaying sleep TMR effect sizes calculated from each experiment at 

a task level, matching descriptive from Table 1. The overall TMR effect was 

presented, calculated from a random effects model using task-level effect sizes from 

the forest plot and Table 1. 

Figure 4: A contour-enhanced funnel plot displaying all effect sizes at experiment levels 

(solid circles) from sleep TMR research. Y-axis indicates standard errors of effect 

sizes, x-axis indicates magnitudes of effect sizes in terms of Hedges’ g. Imputed 

effect sizes calculated from the Trim-and-Fill analysis are displayed in open circles.  

Figures 5: Results of moderator analyses from a) cueing stages; b) learning types; c) outcome 

measurements; d) experimental designs and e) cueing modalities. Each data point 

represents an individual effect size at an outcome level. Statistical outliers are the 

same as those indicated in Table 1 and are marked as triangles. The figure displays 

aggregated effect sizes from each moderator analyses, with error bars representing 

95% CIs. The figure displays both results without outliers (solid lines with solid 

circles) and results including all data points (dashed lines with open circles).  

Figure 6: A meta-regression analysis revealed no relationship between sleep length and TMR 

effects. Statistical outliers are the same as those indicated in Table 1 and are marked 

Figure



as triangles. The regression line (the solid line) and its 95% confidence intervals (the 

dashed lines) were calculated from the meta-regression model without outliers. 

Figure 7: Results of focal analyses. Each data point represents an individual effect size at an 

outcome level. Statistical outliers are the same as those indicated in Table 1 and are 

marked as triangles. The figure displays aggregated effect sizes based on each focal 

analysis, with error bars representing 95% CIs. For fearful memories, the figure 

displays both result without outliers (the solid line with a solid circle) and result 

including all data points (the dashed line with an open circle).  
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